ISSN 0718-3291 Versión Impresa

ISSN 0718-3305 Versión en línea

Volumen 16 N° Especial, - 2008

pdf Índice

Calibre quiral para aumentar el coeficiente de rendimiento de motores magnéticos

 

Héctor Torres-Silva

1 Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: htorres@uta.cl


RESUMEN

Este trabajo introduce un recalibre físico quiral asimétrico usado para aumentar el coficiente de rendimiento de un motor eléctrico. Se presenta una revisión de la teoría de calibres y se examina el descarte de la condición de Lorentz para obtener el recalibrado quiral. Se introduce el coeficiente de rendimiento y se analiza un motor magnético bajo el enfoque quiral que permite un proceso Beltrami.


Palabras clave: Calibre quiral, motor magnético, Lorentz.

ABSTRACT

This paper introduces a physical chiral asymmetrical regauging to increase the coefficient of performance of an electric motor. A review of gauge theory and a consideration of the disposal of the Lorentz condition to achieve the chiral regauging are presented. The coefficient of performance terminology is introduced. A magnetic motor is discussed under a chiral approach which gives a Beltrami process.

Keywords: Chiral gauge, magnetic motor, Lorentz.



REFERENCES

[1] J. Bedini. "Device and Method of a Back EMF Permanent Electromagnetic Motor Generator". US: Bedini Technology, Inc. 2002.

[2] A. Trzynadlowski. "Introduction to Modern Power Electronics". New York: John Wiley & Sons. Inc. 1998.

[3] K. Annamalai and I. Puri. "Advanced Thermodynamics Engineering". New York. CRC Press. 2002.

[4] D. Griffiths. "Introduction to Electrodynamics". New York. Prentice-Hall. 1999.

[5] B. Thide. "Electromagnetic Field Theory". Uppsala: Upsilon Books. 2004.

[6] P.K. Anastasovski. "Classical Electrodynamics without the Lorentz Condition:  Extracting Energy from the Vacuum". Physica Scripta. Vol. 61, p. 513. 1999.

[7] T.D. Lee. "Particle Physics and Introduction to Field Theory". New York: Harwood Academic Publishers. 1981.

[8] B. Lehnert and S. Roy. "Extended Electromagnetic Theory". Singapore: World Scientific. 1998.

[9] D. Griffiths. Introduction to Elementary Particles. New York. John Wiley & Sons, Inc. 1987.

[10] M.W. Evans and H. Eckardt. "Spin connection resonance in magnetic motors". Documento 74 en la serie sobre ECE. URLs: www.aias.us

[11] D. Reed. "Beltrami vector fields in electrodynamics – a reason for reexamining the structural foundations of classical field physics?" Modern Nonlinear Optics, Part 3. Second Edition. Advances in Chemical Physics. Vol. 119. Recopilado por Myron W. Evans. John Wiley & Sons. 2001.

[12] G. Kasyanov. "Phenomenon of electrical current rotation in nonlinear electric systems". Violation of the law of charge conservation in the system, New Energy Technologies. Vol. 2 Nº 21, pp. 28-30. 2005.

[13] "Motor de Johnson de imanes permanentes". US Patent 4151431. 1979.

[14] H. Torres-Silva. "Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación". Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 6-23. 2008.

[15] H. Torres-Silva. "Chiral field ideas for a theory of matter". Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 36-42. 2008.

[16] H. Torres-Silva. "A metric for a chiral potential field". Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 91-98. 2008.

 

 

 



Otros Artículos

# Título Ver
1
Diseño de un codec de imágenes basado en la transformada Bandelet utilizando un procesador NIOSII (2012)
Jaime-Andres Arteaga, Jaime Velasco-Medina
HTML | PDF
2
Enfoque de aplicación ágil con Scrum, Lean y Kanban (2021)
José Gaete, Rodolfo Villarroel, Ismael Figueroa, Héctor Cornide-Reyes, Roberto Muñoz
PDF
3
JGOOSE: Una herramienta de ingeniería de requisitos para la integración del modelado organizacional I* con el modelado de casos de uso en UML (2009)
André Abe Vicente, Victor F. A. Santander, Jaelson B. Castro, Ivonei Freitas da Silva, Francisco G. Reyes Matus
HTML | PDF

Desarrollado por: Cristian Díaz Fonseca - informatica@cristianfonseca.cl